1037

Free-Radical Chain Substitution Reactions $(S_H 2')$ of Alkenyl-, Alkynyl-, and (Alkenyloxy)stannanes¹

Glen A. Russell* and Lourdes Lucas Herold

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received September 20, 1984

Free-radical chain substitution reactions of allyltributylstannane were observed with PhSSPh, PhCH₂SSCH₂Ph, PhSeSePh, PhSO₂Cl, *n*-PrSO₂Cl, or CCl₃SO₂Cl, where the attacking radicals leading to allylic rearrangement with displacement of Bu₃Sn· were PhS·, PhCH₂S·, PhSe·, PhSO₂·, *n*-PrSO₂·, and CCl₃·, respectively. Allylic rearrangement was also observed in the S_H2′ reaction of crotyltributylstannane with PhSSPh, PhCH₂SSCH₂Ph, PhSO₂Cl, or *n*-PrSO₂Cl. Propargyltriphenylstannane underwent S_H2′ substitution to form the allenic substitution products with PhSO₂Cl, *n*-PrSO₂Cl. CCl₄, and CHCl₃ while 2-butynyltriphenylstannane formed the 1,2-butadiene with PhSO₂Cl or *n*-PrSO₂Cl. Reaction of (1-cyclohexenyloxy)tributylstannane with CCl₄ or BrCCl₃ formed α -(trichloromethyl)cyclohexanone. With HCBr₃ the initially formed α -(dibromomethyl)cyclohexanone readily underwent dehydrobromination to form α -(trichloromethyl)isobutyraldehyde with CCl₄ or BrCCl₃. Reaction with HCBr₃ gave a mixture of α -(dibromomethyl)isobutyraldehyde and 1-(dibromomethyl)-2,2-dimethyloxirane.

Introduction

Allylstannanes are recognized to undergo S_H2' substitution with a variety of alkyl halides (reactions 1 and 2).²

$$R + CH_2 = CHC + H_2 SnR'_3 \xrightarrow{SH'} RCH_2 CH = C + H_2 + R'_3 Sn \cdot (1)$$

$$R'_{3}Sn \cdot + RX \to R'_{3}SnX + R \cdot$$
 (2)

Similar reaction are known for allyl or propadienyl derivatives of Co, Ir, and Rh with both carbon-centered³ and heteroatom-centered radicals.⁴ We have extended this free-radical chain substitution to include propargyl⁵ and alkenyloxy tin derivatives. We have also demonstrated S_H2' substitutions using hetero-centered radicals (RS·, RSO₂·, and PhSe·) with allylstannanes.

Results and Discussion

AllyIstannanes. Table I summarizes results of photostimulated substitutions of allyl- and crotyltributylstannane (reaction 3). The reactions did not occur in the dark but could be initiated by azobis(isobutyronitrile) (AIBN) at 70 °C. The photostimulated reactions were completely inhibited for up to 4 h by 10 mol % of $(t-Bu)_2NO$ or galvinoxyl.

The 1-butenyl derivatives 2g and 2i rearranged readily under the reaction conditions to give 2-butenyl derivatives.⁶ This rearrangement was much faster for Q = PhS than for

(3) Gupta, B. D.; Funabiki, T.; Johnson, M. D. J. Chem. Soc., Chem. Commun. 1977, 653; J. Am. Chem. Soc. 1976, 98, 6692. Crease, E.; Gupta, B. D.; Johnson, M. D.; Moorhouse, S. J. Chem. Soc., Dalton Trans. 1978, 1821. Bury, A.; Cooksey, C. J.; Funabiki, T.; Gupta, B. D.; Johnson, M. D. J. Chem. Soc., Perkin Trans. 2 1979, 1050. Ashcroft, M. R.; Bury, A.; Cooksey, C. J.; Davies, A. G.; Gupta, B. D.; Johnson, M. D.; Morris, H. J. Organomet. Chem. 1980, 195, 89.

D. J. Chem. Soc., Perkin Trans. 2 1979, 1050. Ashcrott, M. R.; Bury, A.;
Cooksey, C. J.; Davies, A. G.; Gupta, B. D.; Johnson, M. D.; Morris, H.
J. Organomet. Chem. 1980, 195, 89.
(4) Crease, A. E.; Johnson, M. D. J. Am. Chem. Soc. 1978, 100, 8013.
Crease, A. E.; Gupta, B. D.; Johnson, M. D. J. Chem. Soc., Perkin Trans.
1 1979, 2611. Ashcroft, M. R.; Gupta, B. D.; Johnson, M. D. J. Bialkowska, E.; Duong,
K. N. V.; Gaudemar, A. Ibid. 1974, 2611. Deniau, J.; Duong, K. N. V.;
Gaudemar, A.; Bougeard, P.; Johnson, M. D. J. Chem. Soc., Perkin Trans.

(6) Kwart, H.; Johnson, N. A. J. Org. Chem. 1977, 42, 2855. Brownbridge, P.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1976, 2125.

RCH=CH2CH2SnBu3	R CHCH=CH2	+ Bu ₃ SnY	(3)
1a.R=H	ų		
b,R+CH3	20 R = H · O = PhS		
	b.R=H:O=PhCH ₂ S		
	c.R+H:Q+PhSe		
	d, R = H; Q = PhSO ₂		
	e, R = H; Q = n-PrSO2		
	f.R=H:Q=CCI3		
	a. R = CH ₁ : Q = PhS		
	h R=CH=Q=PhCHoS		
	i R = CH=: Q = PhSO ₂		
	j, R = CH3; Q = n-Pr SO2		

 $Q = PhCH_2S$ and for $Q = PhSO_2$ than for $Q = n-PrSO_2$. Thus, after 2 h of irradiation in the presence of PhSSPh, 1b gave a 1:1 mixture of 2(Q = PhS) and 3(Q = PhS).

$$\begin{array}{c} \text{QCH}(\text{CH}_3)\text{CH} = \text{CH} \xrightarrow{h\nu} \text{CH}_3\text{CH} = \text{CHCH}_2\text{Q} \quad (3a) \\ 2 & 3 \end{array}$$

However, with short irradiation times the 1-butenyl derivatives 2h-j could be formed without significant rearrangement to 3. The sulfonyl radicals PhSO₂· or *n*-PrSO₂· reacted with 1 without loss of SO₂. However, with Cl₃C-SO₂· loss of SO₂ occurred to form the CCl₃· which underwent S_H2′ substitution with 1a to yield 2f. A similar process has been observed in the reaction of CCl₃SO₂Cl with allylcobaloxime.⁴

The displacement of R_3Sn by RSO_2 or RS radicals must be a reversible reaction because Ueno has observed that allylic sulfides or sulfones will react with Bu_3SnH to form allylic stannanes.⁷ The equilibrium of reaction 4 can

$$snBus + RSO_n + BusSn \cdot (4)$$

be driven to the left by the reactions of RSO_n with Bu_3SnH or to the right by the reactions of R_3Sn with RSSR or RSO_2Cl . Under the conditions employed in Table I the isomerization of 1-butenyl- to 2-butenyltributylstannanes (via Bu_3Sn attack) was not a complicating factor.

N-Bromosuccinimide failed to undergo a free-radical chain reaction with 1a. Only allyl bromide was formed, presumably from an S_E substitution process.

Propargylstannanes. Reactions of propargyltriphenylstannane with PhSO₂Cl, *n*-PrSO₂Cl, CCl₄, or CHCl₃

⁽¹⁾ Supported by Grant CHE-8119343 from the National Science Foundation.

 ⁽²⁾ Kosugi, M.; Kurino, K.; Takayama, K.; Migita, T. J. Organomet. Chem. 1973, 56, C11. Grignon, J.; Servens, C.; Pereyre, M. Ibid. 1975 96,
 225. Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829.
 Chandrasekhar, S.; Latour, S.; Wuest, J. D.; Zacharie, B. J. Org. Chem.
 1983, 48, 3810.

⁽⁵⁾ After this paper was submitted, a report of allene-transfer reactions utilizing H≡CCH₂SnPh₃ has appeared: Baldwin, J. E.; Adlington, R. M.; Basak, A. J. Chem. Soc., Chem. Commun. 1984, 1284.

⁽⁷⁾ Ueno, Y.; Okawara, M. J. Am. Chem. Soc. 1979, 101, 1893. Ueno,
Y.; Aoki, S.; Okawara, M. Ibid. 1979, 101, 5414. Ueno, Y.; Sano, H.;
Okawara, M. Tetrahedron Lett. 1980, 21, 1767. Ueno, Y.; Ohta, M.;
Okawara, M. J. Organomet. Chem. 1980, 197, C-1. Ueno, Y.; Chino, K.;
Okawara, M. Tetrahedron Lett. 1982, 23, 2575.

Table I. Photostimulated Reaction of Allylstannanes^a

$RCH = CHCH_2SnBu_3 + QY \xrightarrow{h\nu}_{C_0H_6} RC(Q)HCH^2$	$=CH_2 + Bu_3SnY$
<u></u>	product

R	QY	conditn	(% yield) ^b
Н	PhSSPh	6 h	2a (85, 77 ^c)
Н	PhSSPh	4 h, 10 mol %	2a (0)
		$(t-Bu)_2NO$	
Н	PhSSPh	4 h, 10 mol %	2a (0)
		galvinoxyl	
н	$PhCH_2SSCH_2Ph$	6 h	2b (77°)
н	PhSeSePh	6 h	2c (94)
Н	PhSO ₂ Cl	6 h	2d (76 ^c)
Н	$n - \Pr O_2 Cl$	6 h	2e (74 ^c)
Н	CCl_3SO_2Cl	6 h	2f (31)
CH_3	PhSSPh	2 h	2g:3a (1:1)
CH_3	$PhCH_2SSCH_2Ph$	1.5 h	2h (34)
CH_3	PhSO ₂ Cl	9 min	2i (72)
CH_3	n-PrSO ₂ Cl	3 min	2j (46)

^aGeneral procedure involved 3 mmol of stannane and 3 mmol of QY in 10 mL of deoxygenated C_6H_6 or C_6D_6 . Solutions were stirred in a round-bottomed Pyrex flask ca. 15 cm from a 275-W sunlamp. ^b¹H NMR yields in C_6D_6 . ^c Isolated yields.

Scheme I $CCI_3 \cdot + C = COSnR_3 \longrightarrow CCI_3 C - COSnR_3$ $CCI_3 C - COSnR_3 \longrightarrow CCI_3 C - COSnR_3$ $R_3Sn \cdot + XCCI_3 \longrightarrow R_3SnX + CCI_3$

were complicated by rearrangement to the propadienylstannane (reaction 5). The complete rearrangement of $HC \equiv CCH_2SnPh_3 + Ph_3Sn \rightarrow Ph_3SnCH = \dot{C}Ch_2SnPh_3$ 4a

 $\rightarrow Ph_{3}SnCH = C = CH_{2} + Ph_{3}Sn \cdot (5)$ 5

4a to 5 occurred upon irradiation at 40 °C or with AIBN at 70 °C. Thermal rearrangement at 70 °C was not observed in 8 h. This rearrangement was not observed for the 2-butynylstannane 4b. Apparently 4a is more reactive than 5 toward attack by RSO_2 , CCl_3 , or $CHCl_2$ because reactions of 4a with RSO_2Cl , CCl_4 , or $CHCl_3$ led to a mixture of 5 and the substitution product 6. Table II summarizes results obtained using AIBN and $h\nu$ to stimulate reaction 6. Better yields of 6a-d were obtained with

$$\begin{array}{c|c} RC = CCH_2 SnPh_3 & \underline{QY} \\ \hline \textbf{4a}, R = H \\ \textbf{b}, R = CH_3 \\ \hline \textbf{b}, R = CH_3 \\ \hline \textbf{c}, R = H; Q = PhSO_2 \\ \hline \textbf{c}, R = H; Q = PhSO_2 \\ \hline \textbf{c}, R = H; Q = n - PrSO_2 \\ \hline \textbf{c}, R = H; Q = CHC_1 \\ \hline \textbf{d}, R = H; Q = PhSO_2 \\ \hline \textbf{d}, R = H; Q = PhSO_2 \\ \hline \textbf{f}, R = CH_3; Q = PhSO_2 \\ \hline \textbf{f}, R = CH_3; Q = PrSO_2 \\ \hline \textbf{f}, R = CH_3;$$

AIBN at 70 °C while $h\nu$ at 35–40 °C gave better yields in the reations of **4b**. The allenic stannane **5** was unreactive to attack by RSO₂, CCl₃, or CHCl₂ radicals since the products of S_H2' substitution (QCH₂C=CH) were not observed. Attack of radicals (S_H2') upon allenic groups have been observed in the case of cobaloxime, iridium, and rhodium derivatives.^{3,4}

(Alkenyloxy)stannanes. (Alkenyloxy)stannanes are known to undergo electrophilic attack at the β -position by alkyl halides.⁸ Arylation reactions employing Pd(0) are also known to occur.⁹ We have examined the free-radical

 $S_{\rm H}2'$ substitution of 7 and 8 with CCl4, $BrCCl_3$, and $CHBr_3$ (Scheme I).

Stannanes 7 and 8 were chosen because they are reported to exist solely in the oxy form and not as a mixture of two equilibrating metallotropic isomers.¹⁰

 α -(Trichloromethyl)cyclohexanone (9) was prepared in good yield from 7 upon photostimulated reaction with CCl₄ or BrCCl₃ (reaction 7). The reaactions did not occur in the dark and were inhibited by 10 mol % $(t-Bu)_2$ NO-(Table III). Reaction of 7 with tribromomethane $(h\nu, 1$ h) formed the corresponding α -(dibromomethyl)cyclohexanone (29%) which upon distillation underwent dehydrobromination to form 10 (reaction 8). Reaction of 8 with CCl₄ or BrCCl₃ produced the α -trichloromethyl aldehyde 11 (reaction 9, Table III).

 $CCI_3 X + Me_2 C = CHOSnBu_3 \xrightarrow{h_{\mu}} CCI_3 CMe_2 CHO + Bu_3 Sn X (9)$

Reaction of 8 with CHBr₃ gave not only the expected dibromomethyl aldehyde 12 (formally $S_H 2'$ substitution) but also the epoxide 13 in a 3:1 ratio (reaction 10). Formation of the epoxide most likely involves α -addition of Br₂CH· followed by an internal ($S_H i$) displacement of Bu₃Sn· (Scheme II).

$$8 + CHBr_{3} \xrightarrow{h_{r}} Me_{2}CCH + Me_{2}C \xrightarrow{0} C \xrightarrow{H} (10)$$

$$CHBr_{2} \qquad 13$$
12

Reaction products of CBr₄ or PhSSPh with 7 or 8 were not observed and only traces of reaction occurred with CHCl₃. The chloro sulfones PhSO₂Cl or CCl₃SO₂Cl reacted with 7 in the presence or absence of irradiation to form α -chlorocyclohexanone by an S_E2' reaction (reaction 11).

Experimental Section

Reagents. Allyltri-*n*-butylstannane was prepared by the Grignard route using THF as solvent:¹¹ bp 106 °C (0.1 torr); ¹H

⁽⁸⁾ Odic, Y.; Pereyre, M. J. Organomet. Chem. 1973, 55, 273. Pommier, J. C.; Pereyre, M. Adv. Chem. Ser. 1976, 157, 82.

⁽⁹⁾ Kuwajima, I.; Urabe, H. J. Am. Chem. Soc. 1982, 104, 6831.

⁽¹⁰⁾ Pereyre, M.; Bellegarde, B.; Mendelsohn, H.; Valade, J. J. Organomet. Chem. 1968, 11, 97.

NMR (C₆D₆) δ 0.7-2.4 (m, 29), 4.8 (m, 2), 5.9 (m, 1). Crotyltrin-butylstannane was prepared from Bu₃SnNa and crotyl chloride:¹² bp 99 °C (0.1 torr); ¹H NMR (C₆D₆) δ 0.9–2.5 (m, 32), 5.2 (m, 2). Propargyltriphenylstannane was prepared by the Grignard route.¹² Recrystallized material from hexane: mp 80-82 °C; ¹H NMR (C₆D₆) δ 1.35 (t, 1, J = 3 Hz), 1.55 (d, 2, J = 3 Hz), 6.8-7.5 (m, 15); IR (CCl₄) 3290, 2110 cm⁻¹. Propadienyltriphenylstannane was prepared from the propargyl isomer by refluxing in EtOH for 15 min:¹³ mp 58-59 °C; ¹H NMR (CCl₄) δ 4.45 (d, 2, J = 7 Hz), 5.51 (t, 1, J = 7 Hz), 7.7 (m, 15). 2-Butynyltriphenylstannane was prepared from the Grignard of 4-bromo-2-butyne¹⁴ (bp 72 °C (100 torr); ¹H NMR δ 1.91 (t, 3), 4.0 (q, 1)). Recrystallization of the stannane from hexane gave material: mp 68-69 °C; ¹H NMR (CCl₄) δ 1.69 (t, 3, J = 4 Hz), 2.16 (q, 2, J = 4 Hz); IR (CCl₄) 2223 cm⁻¹. (1-Cyclohexenyloxy)tri-n-butylstannane was prepared from 1-cyclohexenyl acetate and tri-n-butylethoxystannane:¹⁵ ¹H NMR (CCl₄) δ 0.5-2.0 (m, 35), 4.5 (m, 1). [(2-Methyl-1propenyl)oxy]tri-n-butylstannane was prepared in a similar fashion from 2-methylpropenyl acetate:¹⁶ bp 115 °C (8 torr); ¹H NMR $(CCl_4) \delta 0.5-2.0 (m, 33), 6.5 (m, 1).$

Photostimulated Reactions of Organostannanes. Equal molar amounts (\sim 3 mmol) of substrate and organostannane were mixed in 10 mL of C_6H_6 (or C_6D_6 if the reaction was to be followed by ¹H NMR) in a Pyrex flask fitted with a rubber septum. The solution was deoxygenated by nitrogen bubbling for 15 min and then magnetically stirred ca. 15 cm from a 275-W sunlamp. Reactions employing halomethanes as the substrate used a large excess of the halomethane as the reaction solvent. At the end of the reaction the solvent was removed by rotatory evaporation and the product isolated by kugelrohr distillation. For reactions followed by ¹H NMR the substrates were mixed in C₆D₆ or polyhalomethane solvent, transferred to a 6-mm NMR tube capped with a septum, and irradiated by the sunlamp. For dark reactions the flask or NMR tube was wrapped with aluminum foil. Reactions catalyzed by AIBN were performed in an oil bath at 70 °C.

Reactions of Allyltri-*n***-butylstannane.** Analysis by ¹H NMR for **2a-f** was based on the doublet methylene absorption at δ 3.0–3.5. The following products were isolated. Allyl phenyl sulfide (**2a**): bp 95–140 °C (38 torr); ¹H NMR (C₆D₆) δ 3.45 (d, 2, J = 6.5 Hz), 4.85–6.22 (m, 3), 7.2 (m, 5). Allyl benzyl sulfide (**2b**); bp 140–150 °C (0.5 torr); ¹H NMR (C₆D₆) δ 2.95 (d, 2, J = 6 Hz), 3.58 (s, 2), 4.8–6.1 (m, 3), 7.35 (m, 5). Allyl phenyl selenide (**2c**): ¹H NMR (C₆D₆) δ 3.35 (d, J = 6 Hz). Allyl phenyl selenide (**2c**): ¹H NMR (C₆D₆) δ 3.35 (d, J = 6 Hz). Allyl phenyl selenide (**2d**): bp 80–120 °C (0.3 torr); ¹H NMR (C₆D₆) δ 3.77 (d, 2, J = 6.5 Hz), 4.8–6.1 (m, 3), 7.4–8.0 (m, 5). Allyl *n*-propyl sulfone (**2e**): bp 110–150 °C (39 torr); ¹H NMR (C₆D₆) δ 1.1 (t, 3), 1.8 (m, 2), 2.95 (m, 2), 3.75 (d, 2, J = 6 Hz), 5.25–6.35 (m, 3). 4,4,4-Tri-chloro-1-butene (**2f**): bp 30–50 °C (100 torr); ¹H NMR (C₆D₆) δ 3.2 (d, 2, J = 6 Hz).

Reactions of crotyltri-*n*-butylstannane were followed by ¹H NMR by observing the characteristic PhSCH proton which displayed a pentet splitting for 2h-j and a doublet splitting for 3.

Reactions of Propargyltriphenylstannane (4a). Irradiation of **4a** in C_6D_6 for 19 h showed by ¹H NMR that isomerization to **5** was complete. No isomerization was observed in the dark at 70 °C for 7 h. However, in the presence of 10 mol % of AIBN at 70 °C for 7 h isomerization to **5** was complete. No reaction of **4a** was observed with PhSO₂Cl or *n*-PrSO₂Cl in C_6D_6 for 7 h

at 70 °C. In the presence of AIBN at 70 °C a mixture of 5 and the rearranged sulfones 6a,b was observed. Following kugelrohr distillation 6a and 6b were isolated by preparative GC by using a 5 ft $\times \frac{1}{4}$ in. 15 % OV-3 column at 180 (6a) or 140 °C (6b). 1-(Phenylsulfonyl)propadiene (6a): bp 130 °C (0.8 torr); ¹H NMR $(C_6D_6) \delta 4.65 (d, 2, J = 6.5 Hz), 5.85 (t, 1, J = 6.5 Hz), 6.75-7.95$ (m, 5); ¹³C NMR δ 101.39 (C-1) 209.15 (C-2), 83.16 (C-3), 142.22, 136.00 (ortho), 132.71 (meta), 128.71 (para); IR 1975, 1940 cm⁻¹; GCMS (relative intensity) 180 (1.5), 141 (25), 116 (12), 77 (100); HRMS 180.02391, calcd for C9H8SO2 180.0245. 1-(n-Propylsulfonyl)propadiene (6b): bp 60-105 °C (1.3 torr); ¹H NMR (C₆D₆) $\delta 0.55$ (t, 3). 1.6 (m, 2), 2.9 (m, 2), 4.95 (d, 2, J = 6.5 Hz), 6.05 (t, 1, J = 6.5 Hz); ¹³C NMR (proton coupled) δ 98.32 (d × t, $J_{CH} =$ 8.4, 0.35 Hz, C-1), 209.95 (s, C-2), 82.87 (t × d, J_{CH} = 7.7, 0.15 Hz, C-3), 57.37 (t, C_{α}), 16.37 (t, c_{β}), 13.01 (q, C_{γ}): IR 1985, 1940 cm⁻¹; GCMS (relative intensity) 104 (100), 103 (11), 81 (25), 79 (20), 76 (71), 75 (13), 67 (99), 63 (12), 55 (30), 54 (30), 53 (31), 47 (14); HRMs 146.0415, calcd for C₆H₁₀SO₂ 146.04016.

Reactions of 4a with CCl₄ and CHCl₃ were performed by using the chlorocarbon as the solvent. Distillation yielded mixtures of **6c** with CCl₄ and **6d** with CHCl₃ which were analyzed by ¹H NMR and GCMS. 4,4,4-Trichloro-1,2-butadiene (**6c**):¹⁷ collected at 35-40 °C (100 torr); ¹H NMR (CCl₄) δ 5.35 (d, 2, J = 6.5 Hz), 6.1 (t, 1, J = 6.5 Hz); IR 1960, 1550 cm⁻¹; GCMS (relative intensity) 162 (0.2), 161 (0.04), 160 (2.2), 159 (0.3) 158 (7), 157 (0.4), 156 (7.8), 125 (10), 123 (63), 121 (100) 87 (10), 86 (10), 85 (50). 4,4-Dichloro-1,2-butadiene (**6d**): collected at 25 °C (1.5 torr); ¹H NMR (double irradiation at 300 MHz) δ 5.8 (d × t, 1 (H-4), $J_{3,4}$ = 8, $J_{1,4}$ = 1 Hz), 5.4 (q, 1 (H-3), $J_{4,3}$ = $J_{1,3}$ = 8 Hz), 4.6 (d × d, 2 (H-1), $J_{3,1}$ = 8, $J_{4,1}$ = 1 Hz); IR (neat) 1980, 1950 cm⁻¹; GCMS (relative intensity) 126 (0.86), 124 (6), 122 (10), 89 (28), 87 (100), 61 (9).

Reactions of 2-Butynyltriphenylstannane (4b). Benzenesulfonyl chloride or n-PrSO₂Cl and 4b in a 1:1 mol ratio (7.4 mmol in 10 mL C_6H_6) were irradiated with a sunlamp. The solvent was evaporated under reduced pressure and 25 mL of 10% aqueous KF added to the residue. After the reaction was stirred for 10 min and filtered, the residue was extracted with Et_2O and the extract stirred for 1 day with 40 mL of 10% aqueous NaOH. The ether layer was separated and kugelrohr distilled to give 6e,f and a residue of 4b. The sulfones 6e,f were further purified by preparative GC by using a 5 ft \times ¹/₄ in. 15% OV-3 column at 180 (6e) or 140 °C (6f). 1-Methyl-1-(phenylsulfonyl)propadiene (6e): collected at 70–110 °C (1.5 torr); ¹H NMR (C_6D_6) δ 1.58 (t, 3, J = 4 Hz), 4.55 (q, 2, J = 4 Hz), 6.5–7.8 (m, 5); ¹³C NMR δ 108.61 (C-1), 207.80 (C-2), 82.01 (C-3), 135.11 (CH₃), 140.86, 132.64 (ortho), 128.56 (meta), 128.8 (para); IR 1980, 1955 cm⁻¹; GCMS (relative intensity) 194 (1), 130 (18), 125 (18), 123 (12), 109 (10), 78 (20), 77 (50), 53 (100); HRMS 194.04033, calcd for C₁₀H₁₀SO₂ 194.04016.

1-Methyl-1-(*n*-propylsulfonyl)propadiene (**6f**): collected at 130–140 °C (1.5 torr); ¹H NMR (C_6D_6) δ 0.53 (m, 3), 1.13 (t, 3, J = 4 Hz), 1.35 (m, 2), 2.50 (m, 2), 4.55 (q, 2, J = 4 Hz); ¹³C NMR δ 106.76 (C-1), 207.65 (C-2), 81.44 (C-3), 13.01 (CH₃), 13.30 (C_{γ}), 54.84 (C_{α}), 16.17 (C_{β}); IR 1970, 1940 cm⁻¹; GCMS (relative intensity) 161 (0.07), 160 (0.9), 118 (4) 90 (1.6), 89 (2.5), 81 (3.1), 75 (6), 74 (15), 58 (3), 54 (12), 53 (100); HRMS 160.05609, calcd for $C_7H_{12}SO_2$ 160.00581.

Reactions of (Alkenyloxy)stannanes. No reaction was observed in the dark between 7 or 8 and halomethanes while the photostimulated reaction of 7 with CCl_4 to form 9 was drastically retarded by 10 mol % (t-Bu)₂NO· for periods up to 85 min (in the absence of the nitroxide, 7 was completely consumed in less than 1 h). Benzenesulfonyl chloride or *n*-PrSO₂Cl reacted readily with 7 in the dark to form α -chlorocyclohexanone.

The (alkenyloxy)stannanes (freshly prepared 7 or 8) were dissolved in 10 mL of the halocarbon (Table III) in a roundbottomed Pyrex flask equipped with a septum. The stirred solution was deoxygenated by nitrogen bubbling for 5 min before irrdiation with a 275-W sunlamp which maintained a reaction temperature of ~ 35 °C. Products were isolated by short-path or kugelrohr distillation and by recrystallization of 9 from hexane.

 α -(Trichloromethyl)cyclohexanone (9): mp 92–93 °C; ¹H NMR (C₆D₆) δ 1.6–2.9 (m, 8), 3.3 (m, 1); IR (CCl₄) 1720 cm⁻¹; GCMS

⁽¹¹⁾ Abel, E. A. J. Organomet. Chem. 1975, 84, 199.

⁽¹²⁾ Seyferth, D.; Jula, T. F.; Dertouzos, H.; Pereyre, M. J. Organomet. Chem. 1968, 11, 63.

⁽¹³⁾ LeQuan, M.; Cardiot, P. Bull. Chem. Soc. Fr. 1965, 45.

⁽¹⁴⁾ Sharefkanov, A. Sh.; Akhmedove, Sh. S. Khim. Khim. Tekhnol. (Alma-Ata, Sb I) 1963; Chem. Abstr. 1964, 61, 13275a.

⁽¹⁵⁾ Ponomarev, S. V.; Baukov, Y. I.; Dudukina, D. V.; Petrosyan, I. V.; Petroskaya, L. I. Zh. Obshch. Khim. 1967, 37, 2204.

⁽¹⁶⁾ Bedoukian, P. Z. J. Am. Chem. Soc. 1944, 66, 1325.

⁽¹⁷⁾ Brady, W. T.; Patel, A. D. J. Chem. Soc. D 1971, 1642; J. Org. Chem. 1972, 37, 3536.

Table II.	Reactions	of	Propargylstannanes	with	QY	Reagents
-----------	-----------	----	--------------------	------	----	----------

 $RC = CCH_2SnPh_3 + QY \rightarrow QC(R) = C = CH_2 + Ph_3SnY$

			%	yield ^b	
R	QY	conditn	$\overline{\text{QC}(\text{R})=\text{C}=\text{C}\text{H}_2}$ (6)	$\frac{Ph_{3}SnC(H)=C=CH_{2}}{(5)}$	
Н	PhSO ₂ Cl	70 °C, C ₆ H ₆ , 8 h, 10 mol % AIBN	36°	36	
Н	$n-\Pr{SO_2Cl}$	70 °C, C ₆ H ₆ , 8 h, 10 mol % AIBN	31	43	
Н	CCl_4	70 °C, CCl ₄ , 8 h, 10 mol % AIBN	46	24	
Н	CHCl ₃	70 °C, CHCl ₃ , 8 h, 10 mol % AIBN	31	12	
CH_3	PhSO ₂ Cl	35 °C, 35 h, hν	42	0	
CH_3	n -Pr $ m SO_2Cl$	35 °C, 38 h, hv	31	0	

^aReaction of 1:1 mole ratio of stannane with QY (1-7 mmol) in 10 mL of solvent. Photostimulated reactions were irradiated with a 275-W sunlamp ca. 15 cm from the Pyrex reaction flask. b1 H NMR yield. ^cIsolated yield.

Table III. Photostimulated Reaction of (Alkenyloxy)stannanes with Alkyl Halides^a

stannane	RX	conditn	product (% yield) ^b
7	CCl	35 °C, 1 h	9 (59)
7	BrCCl ₃	35 °C, 3 h	9 (64)
7	CHBr ₃	35 °C, 1 h	10 (30)
8	CCl₄	35 °C, 2 h	11 (54)
8	BrCCl ₃	35 °C, 5 min	11 (48)
8	CHBr ₃	35 °C, 3 h	12 (18)
	U		13 (6)

^a The stannane (7 mmol) in 10 mL of the halocarbon (solvent) was irradiated with a 275-W sunlamp ca. 15 cm from the Pyrex reaction flask. ^b Yield by ¹H NMR.

(relative intensity) 218 (1), 216 (4), 214 (4), 179 (12), 178 (10), 137 (17), 135 (26), 124 (14), 122 (22), 117 (21), 115 (66) 114 (14), 113 (14), 111 (65), 109 (100), 101 (9), 87 (16), 85 (11), 84 (59), 83 (26), 79 (53), 77 (14), 75 (13), 73 (16), 67 (13), 65 (12), 55 (65), 53 (15), 51 (31), 49 (11).

The photostimulated reaction of HCBr₃ with 7 gave the unstable α -(dibromomethyl)cyclohexanone which could be detected by GCMS or ¹H NMR but which underwent dehydrobromination to α -(bromomethylene)cyclohexanone (10) upon distillation. Compound 10: bp 40–55 °C (4 torr); ¹H NMR (C₆D₆) δ 0.8–2.2 (m, 8), 7.3 (t, 1, J = 2 Hz); IR (CCl₄) 3085, 1709, 1589, 1442, 1288, 1137 cm⁻¹; GCMS (relative intensity) 190 (13), 188 (12), 81 (100), 79 (34), 53 (50), 51 (14). Surprisingly 7 failed to react with CBr₄.

Reactions of 8 with CCl₄ or BrCCl₃ gave α-(trichloromethyl)isobutyraldehyde (11) isolated by kugelrohr distillation at 30–50 °C (0.2 torr): ¹H NMR (C₆D₆) δ 1.09 (s, 6), 9.8 (s, 1); IR (CCl₄) 2840, 2720, 1745, 650 cm⁻¹; GCMS (relative intensity) 194 (0.05), 192 (0.5), 190 (2), 189 (0.1), 188 (2), 161 (4), 159 (4), 127 (11), 126 (26), 125 (20), 124 (40), 123 (9), 119 (6), 117 (8), 111 (8), 109 (13), 91 (29), 89 (96), 87 (16), 63 (13), 53 (100), 51 (28), 50 (9), 49 (11).

The photostimulated reaction of 8 with CBr₄ failed to occur while $HCBr_3$ gave a mixture of 12 and 13 which distilled at 46-51 °C (3.5 torr). The mixture was analyzed by GC-FT-IR and GCMS as well as by ¹H NMR. α -(Dibromomethyl)isobutyraldehyde (12) : ¹H NMR (C₆D₆) δ 1.1 (s, 6), 5.65 (s, 1), 9.3 (s, 1); IR (vapor) 2985, 2947, 2885, 2815, 2707, 1743, 1465, 1400, 1373, 1465, 1400, 1373, 1272, 1157, 991, 883 cm⁻¹; GCMs (relative intensity) 246 (0.4), 244 (1.0), 242 (0.4), 217 (13), 215 (26), 213 (13), 165 (11), 163 (12), 137 (14), 136 (96), 134 (100), 133 (20), 109 (8), 107 (9), 95 (4), 93 (5). 1-(Dibromomethyl)-2,2-dimethyloxirane (13): ¹H NMR (C₆D₆) δ 1.1 (s, 6), 3.35 (d, 1, J = 8 Hz), 5.25 (d, 1, J = 8 Hz); IR (vapor) 2993, 2978, 2939, 2889, 1508, 1458, 1423, 1384, 1315, 1245, 1192, 1138, 1091, 1034, 914 cm⁻¹; GCMS (relative intesnity, 20 eV) 247 (0.01), 246 (0.003), 245 (0.03), 244 (0.01), 243 (0.01), 242 (0.002), 219 (0.3), 188 (1.7), 186 (3.4), 184 (1.8), 166 (1.8), 165 (43), 163 (45), 137 (0.4), 135 (0.4), 137 (0.4), 135 (0.4), 134 (0.02), 133 (0.06), 125 (0.1), 124 (0.2), 123 (0.5), 122 (0.3), 121 (0.5), 109 (0.3), 107 (0.8), 105 (0.5), 84 (0.1), 83 (0.5), 82 (0.1), 59 (14), 56 (3.4), 55 (100), 53 (0.3); GCMS (CI, isobutane) (relative intensity) 247 (52), 245 (100), 243 (52), 241 (0.2), 167 (1.8), 166 (3.4), 165 (30), 163 (28), 151 (45), 149 (47), 141 (3.5), 139 (4.8), 137 (4.6), 135 (4.7), 125 (2.2), 125 (2.2), 123 (1.1), 122 (1.0), 121 (8.3), 113 (9.9), 111 (4.4), 109 (1.3), 101 (1.7), 100 (1.1), 99 (5.6), 97 (7.5), 95 (3.9), 93 (1.6), 91 (1.4), 87 (2.3), 86 (1.7), 85 (16), 83 (7.7), 81 (9.6), 80 (4.5), 75 (2.78), 73 (6), 72 (6.9), 71 (27), 69 (14), 67 (11).

Registry No. 1a, 24850-33-7; **1b**, 31197-41-8; **2a**, 5296-64-0; **2b**, 6937-97-9; **2c**, 14370-82-2; **2d**, 16212-05-8; **2e**, 95019-49-1; **2f**, 13279-84-0; **2g**, 701-75-7; **2h**, 75238-62-9; **2i**, 54897-36-8; **2j**, 95019-50-4; **3**, 702-04-5; **4a**, 4104-89-6; **4b**, 4104-93-2; **5**, 4104-90-9; **6a**, 2525-42-0; **6b**, 95019-51-5; **6c**, 34819-62-0; **6d**, 83682-41-1; **6e**, 13603-90-2; **6f**, 95019-52-6; **7**, 17851-97-7; **8**, 17198-92-4; **9**, 95019-53-7; **10**, 95019-54-8; **11**, 16630-97-0; **12**, 95019-55-9; **13**, 95019-56-0; PhSSPh, 882-33-7; PhCH₂SSCH₂Ph, 150-60-7; PhSeSePh, 1666-13-3; PhSO₂Cl, 98-09-9; *n*-PrSO₂Cl, 10147-36-1; CCl₃SO₂Cl, 2547-61-7; CCl₄, 56-23-5; CHCl₃, 67-66-3; BrCCl₃, 75-62-7; CHBr₈, 75-25-2.